No description available
pip install fastpluggy-ia-tools
pip install fastpluggy-ia-tools==0.0.7
A comprehensive FastPluggy plugin for AI/ML infrastructure monitoring and management.
This plugin provides essential tools for monitoring GPU resources, CUDA environments, and Hugging Face model caches.
The IA Tools plugin is designed to help developers and system administrators monitor and manage AI/ML infrastructure components. It provides web-based interfaces for checking GPU status, CUDA availability, and managing Hugging Face model caches.
HF_HOME and HUGGINGFACE_HUB_CACHE configurationThe plugin automatically installs the following dependencies:
- pynvml: NVIDIA GPU monitoring library
- psutil: System and process monitoring
- nvidia-ml-py3: Alternative NVIDIA ML library
cd src/fastpluggy_plugin/ia_tools
pip install -e .
HUGGINGFACE_HUB_CACHE: Custom cache directory path (highest priority)HF_HOME: Hugging Face home directory (cache will be $HF_HOME/hub)~/.cache/huggingface/hubPROCFS_PATH: Custom /proc filesystem path for containerized environmentsThe plugin is automatically registered with FastPluggy and appears in the "IA" menu section.
Once installed, the plugin provides three main pages accessible through the FastPluggy web interface:
/gpu_info)/cuda_status)/huggingface_cache)from fastpluggy_plugin.ia_tools.tools.nvidia_gpu_tool import get_gpu_info, get_gpu_processes
# Get GPU information
gpu_info = get_gpu_info()
for gpu in gpu_info:
print(f"GPU {gpu['gpu_index']}: {gpu['name']}")
print(f"Memory: {gpu['used_memory']}/{gpu['total_memory']} MiB")
print(f"Utilization: {gpu['utilization']}%")
# Get GPU processes
processes = get_gpu_processes()
for proc in processes:
print(f"PID {proc['pid']}: {proc['process_name']} using {proc['memory_usage']} MiB")
from fastpluggy_plugin.ia_tools.widgets import check_nvidia_gpu, check_cuda_version, check_python_gpu_support
# Check NVIDIA GPU availability
has_gpu, gpus = check_nvidia_gpu()
if has_gpu:
print(f"Found {len(gpus)} GPU(s)")
# Check CUDA version
has_cuda, version = check_cuda_version()
if has_cuda:
print(f"CUDA version: {version}")
# Check PyTorch GPU support
has_torch, info = check_python_gpu_support()
if has_torch and info['cuda_available']:
print(f"PyTorch {info['version']} with {info['gpu_count']} GPU(s)")
from fastpluggy_plugin.ia_tools.tools.huggingface_cache_tool import get_cached_models, get_cache_summary
# Get cache summary
summary = get_cache_summary()
print(f"Cache directory: {summary['cache_directory']}")
print(f"Total models: {summary['total_models']}")
print(f"Total size: {summary['total_size_human']}")
# List cached models
models = get_cached_models()
for model in models:
print(f"{model['full_name']}: {model['size_human']} ({model['model_type']})")
| Endpoint | Method | Description |
|---|---|---|
/gpu_info |
GET | Display GPU information and processes |
/cuda_status |
GET | Show CUDA and PyTorch status dashboard |
/huggingface_cache |
GET | List Hugging Face cached models |
All endpoints require authentication and return HTML responses for web interface display.
The plugin includes comprehensive error handling:
- Graceful degradation when NVIDIA drivers are not available
- Safe handling of missing CUDA installations
- Robust cache directory detection with fallbacks
- Process monitoring with permission handling
nvidia-smi command is available in PATHnvcc is available in PATHnvcc --versionsrc/fastpluggy_plugin/ia_tools/
├── src/
│ ├── plugin.py # Main plugin class
│ ├── router.py # FastAPI routes and endpoints
│ ├── widgets.py # Environment checking utilities
│ └── tools/
│ ├── nvidia_gpu_tool.py # GPU monitoring functions
│ └── huggingface_cache_tool.py # HF cache management
├── pyproject.toml # Package configuration
├── requirements.txt # Additional dependencies
└── README.md # This file
This plugin is part of the FastPluggy ecosystem. Please refer to the main FastPluggy project for license information.
For issues, feature requests, or contributions, please refer to the main FastPluggy project repository.
This plugin does not have a Changelog file or it could not be extracted from the package.
API documentation for this plugin is not available.
Last analysis performed: 2025-08-10 15:42:09
This plugin has a valid entry point:
debug_tools
= fastpluggy_plugin.ia_tools.plugin:IAPlugin
Issues were found during analysis, but details are not available.
fastpluggy_plugin.ia_tools.plugin:IAPlugin